
Chapter 28 - FORM FACTORS FOR POLYMER SYSTEMS 
 
 
1. THE DEBYE FUNCTION FOR GAUSSIAN CHAINS 
 
Polymer coils in theta solvents or in the melt state follow Gaussian chain statistics 
whereby the inter-monomer distance rij is given by the following Gaussian distribution 
function: 
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Here <rij

2> is the variance given in terms of the statistical segment length a as: 
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The single-chain form factor is given by: 
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The following property of the Gaussian distribution has been used: 
 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ><
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ><
−>=−<

6
rQ

exp
2
xQ

exp]xiQexp[
2

ij
2

x
2

ij
2

x
ijx  (4) 

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ><
−>=−<

6
rQ

exp]r.Qiexp[
2

ij
2

ij
rr . 

 
The following general identity is used: 
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Assuming that the number of chain segments n is large (n>>1), one obtains the Debye 
function (Debye, 1947): 
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The radius of gyration is given by RBgB

= 6/na 2 . 
 
Small-Q and high-Q expansions of the Debye function are: 
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Two approximations are included here for the Debye function: 
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The first form agrees better at low-Q and the second form agrees better at high Q.  
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Figure 5: Variation of the Debye function P(Q) along with two approximations that 
bracket its variation. The form ( )3/RQ11 2

g
2+  is a good approximation at low-Q and the 

form ( )2/RQ11 2
g

2+  is a good approximation at high-Q.  
 
Polymer chains are not characterized by uniform density. The form factor (Debye 
function) is not a square and cannot therefore be expressed as a square of the amplitudes.  
 
 
2. SINGLE-CHAIN FORM FACTOR FOR GAUSSIAN CHAINS 
 
Consider a flexible polymer coil where each monomer pair located a distance ijr

r
 apart 

obeys the Gaussian distribution: 
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The average of the segment inter-distances squares is kept in the general form: 
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ν is the excluded volume parameter. Note that ijij rS rr

=  in the notation used where ijrr  is in 

the laboratory reference frame and ijS
r

 is in the center-of-mass reference frame. Within 
this approach, the single-chain form factor is expressed as:  
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Note that the monomer pair is always correlated through chain connectivity so that the 
simplifying approximation 2|)Q(F|)Q(P =  (which is made for uniform density objects) is 
not valid for polymers. The typical manipulations (as in the case of the Debye function 
described previously) are performed.  
 
Assuming that the number of chain segments n is large (n >> 1), one obtains: 
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Going to the continuous limit: 
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This integral is “almost” analytical and can be expressed in terms of the incomplete 
gamma function: 
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The result is: 
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The high-Q limit of this form is given by: 
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Here Γ(x) = γ(x,∞) is the gamma function. The asymptotic limit is dominated by the first 
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Polymer chains follow Gaussian statistics in polymer solutions: they are swollen in good 
solvents, are thermally relaxed in “theta” solvents and partially precipitate in poor 
solvents. The familiar Debye function is recovered when ν = ½.  
 
 
3. OTHER POLYMER CHAIN ARCHITECTURES 
 
Many polymer chain architectures exist: "stars" consist of many equal size branches 
connected to a central core, "combs" consist of side branches grafted onto a main chain, 
"rings" consist of looped chains, "gels" consist of highly branched structures that are 
grown outwardly (dendrimers are the most regular gels), "networks" consist of 
crosslinked systems that contain a large number of inter-connected structures, etc. These 
various polymer systems are made in the homopolymer form (all monomers are 
chemically identical) or copolymer form (each chain portion consists of blocks of 
monomers that are chemically different). Single-chain form factors for such architectures 
have been worked out and are summarized elsewhere (Burchard, 1983; Hammouda, 
1993; Higgins-Benoit, 1994). Basic elements are included here.  
 
In the same spirit used to derive the form factor for an isolated polymer chain (Debye 
function): 
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one can also derive the form factor amplitude for a polymer chain anchored at one end. In 
this case: 
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Similarly, a propagation factor can be defined (involving no summation): 
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Figure 6: Schematic representation of the summation variables for the various scattering 
factors for Gaussian polymer chains.  
 
The three scattering factors E(Q), F(Q), and P(Q) can be used to work out the form 
factors for many polymer architectures.  
 
Consider the simple case of a diblock copolymer A-B consisting of two blocks with NA-
NB segments. The various partial form factors follow: 
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Consider now an A-B-C triblock copolymer with nA-nB-nC segments. The form factor 
involves many terms: 
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The scattering lengths have been omitted for convenience. They have all been assumed to 
be equal. In order to calculate the SANS scattering cross section, one would have to 
include the contrast factors, the segment volumes, the polymer macromolecules number 
densities, and the inter-polymer structure factors.  
 
Other more complex architectures can be handled this way.  

 
Figure 7: Various possible polymer architectures exist.  
 
 
4. STAR POLYMER ARCHITECTURE 
 
The simplest case of polymer chain branching is the star polymer which is considered 
here. 

 
Figure 8: Representation of a star polymer with 5 branches.  
 
The form factor for a star polymer containing nb branches and n statistical segments per 
branch is given by: 
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P(n) is the form factor for a chain with n segments (Debye function) and F(n) is the form 
factor amplitude. Consider the following relationship (identity): 
 
 )n(Fn2)n(Pn2)n2(P)n2( 2222 += .    (23) 
 
Therefore: 
 

 ( ))n(F)2n()n2(P2
n
1)Q(P 2

b
b

−+= .    (24) 

 
This is the result for the form factor for a Gaussian polymer star. More complicated 
architectures (comb, dendrimers, arborescent structures, etc) can be handled this way.  
 
 
5. POLYMER RINGS 
 
The form factor for a polymer ring can be calculated using a multivariate Gaussian 
distribution approach. For a Gaussian polymer ring, P(Q) can be calculated as follows: 
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In order to evaluate <rij

2>, construct the ring from a linear chain which is then closed. 
 

 
Figure 9: A polymer ring can be constructed by closing a linear chain.  
 
A bivariate Gaussian distribution is defined as: 
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Here ij1 rr rr

= , Δ is the determinant of the correlation matrix C , D  is the inverse 

( 1CD −= ) and the 4 elements of C  are given by: 2a/r.rC >=< νμμν

rr  with {μ,ν=1,2}. The 
ring closing step is formed by setting 0r2 =

r . This leaves a univariate Gaussian 
distribution: 
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The average mean square distance between 2 monomers i and j that belong to the blocks 
of length n is therefore given by: 
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More specifically, in this case: 
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So that: 
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The form factor for the polymer ring is therefore: 
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The first term is dropped for n >>1. In order to simplify this equation, we take the 
continuous chain limit (whereby Q2a2/6<<1 and n >>1 but keeping Q2a2n/6 finite) and 
change the summations into integrations:  
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We notice the following identity: 
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Therefore: 
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After integration variable changes and a few manipulations, one obtains the final result: 
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Here D(U) is Dawson’s integral: 
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The variable U is given by 2QR26naQU g
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The method described here for a single ring can be generalized to calculate more complex 
structures containing looping features.  
 
 
6. MORE COMPLEX RING-CONTAINING ARCHITECTURES 
 
Another case involving correlations between 2 blocks (n monomers each) separated by 3 
linear chain portions (n1, n2 and n3 monomers respectively) that are joined at the 
extremities of the 2 blocks is considered here. This structure can be constructed using a 



long linear chain (with 2n+n1+n2+n3 monomers) that includes 2 crosslinks (corresponding 
to 0r2 =
r  and 0r3 =

r ). All segment lengths are assumed to be equal to a for simplicity.  
 

 
Figure 10: Correlations between two (outer) blocks for a particular polymer chain 
architecture. 
 
A trivariate Gaussian distribution describing this structure is given by: 
 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
⎟
⎠
⎞

⎜
⎝
⎛

π
= ∑

νμ
νμνμ

3

,
2

2
3

2
9

2321 r.D.r
a2
3exp1

a2
3)r,r,r(P rrrrr .  (37) 

 
Here also ij1 rr
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=  and C  has 9 elements. The two crosslinks are formed by setting 
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In this case: 
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 C13 = C31 = (n1+n2) 
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The partial form factor describing correlations between the two outer blocks is given by: 
 

 ∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ><
−=

n

j,i

2
ij

2

2 6
rQ

exp
n
1)Q(P     (40) 

 
which can be written simply as: 
 

 ( )[ ]
[ ]222

222

321

22

6/naQ
6/naQexp1

n
1

n
1

n
1

6
aQexp)Q(P −−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−= . (41) 

 
In summary, this method consists in forming the correlation diagram using one single 
chain and choosing judiciously the location of crosslinks. All elements of the correlation 
matrix C  need to be calculated so that the first element (recall that ij1 rr rr

= ) of its inverse, 
D11=Δ11/Δ (where Δ11 is the cofactor of element C11 and Δ is the determinant of C ) is 

obtained therefore yielding <rij
2
>/a

2
=Δ/Δ11. This procedure is useful for the calculation of 

correlations needed in the modeling of more complicated architectures ("olympic rings", 
regular networks, etc). 
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QUESTIONS 
 
1. What is the form factor for a Gaussian polymer coil of radius of gyration Rg?  
2. Calculate the form factor PAC(Q) between the two outer blocks for a triblock 
copolymer A-B-C.  
3. What is the form factor for a Gaussian polymer ring? 
4. Calculate the radius of gyration for a Gaussian ring polymer. 
 



 
ANSWERS 
 
1. The form factor for a Gaussian polymer coil is given by the Debye function 

( )[ ] 4
g

42
g

22
g

2 RQ/RQ1RQexp2)Q(P +−−=  where Rg is the radius of gyration.  
2. The form factor PAC(Q) between the two outer blocks for a triblock copolymer A-B-C 
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3. The form factor for a Gaussian polymer ring is given by 
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4. The radius of gyration squared for a Gaussian ring polymer is given by: 
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Recall that for a linear polymer 
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is the statistical segment length.  
 
 


